樱花视频

Skip to main content

Table 5 Forecasting performance for 3-month horizon across Brazilian states using different models

From: Forecasting dengue across Brazil with LSTM neural networks and SHAP-driven lagged climate and spatial effects

Federal Unit (FU)

Code

LSTM-Cases

LSTM-Climate

LSTM-Climate-Spatial

Bayesian Baseline

MAE

MAPE

CRPS

MAE

MAPE

CRPS

MAE

MAPE

CRPS

MAE

MAPE

CRPS

Acre (AC)

12

752.39

196.70%

144.35

360.28

96.57%

77.95

473.87

152.33%

91.31

737.51

157.52%

146.92

Alagoas (AL)

27

186.93

83.76%

31.76

119.99

67.12%

21.07

87.26

41.45%

13.22

230.37

71.56%

41.24

Amap谩 (AP)

16

63.52

59.09%

13.35

28.44

29.11%

5.97

37.99

44.55%

8.63

73.23

68.21%

14.43

Amazonas (AM)

13

243.53

58.67%

44.88

121.88

33.79%

23.49

153.30

42.84%

24.28

263.66

61.00%

46.45

Bahia (BA)

29

2932.49

123.10%

488.73

1822.88

84.79%

281.81

1577.97

61.53%

251.77

2245.48

94.66%

380.28

Cear谩 (CE)

23

1091.28

169.44%

174.46

741.25

135.17%

90.75

553.31

89.30%

75.73

892.62

104.49%

171.03

Distrito Federal (DF)

53

2154.51

67.95%

450.12

1128.11

53.25%

299.34

1107.71

42.02%

196.99

2302.85

65.83%

498.63

Esp铆rito Santo (ES)

32

34345.03

171.74%

6034.83

19454.42

94.16%

2780.90

20177.49

104.72%

3644.69

34625.67

157.42%

6479.79

Goi谩s (GO)

52

3861.00

96.09%

672.20

2657.15

58.21%

361.41

1930.93

55.77%

320.78

4371.14

97.44%

933.24

Maranh茫o (MA)

21

383.87

182.60%

67.56

259.98

124.16%

41.58

201.98

90.98%

33.54

341.11

131.34%

65.09

Mato Grosso (MT)

51

2337.15

206.86%

418.48

1398.12

159.67%

253.62

1328.79

103.76%

192.74

2253.75

132.46%

466.69

Mato Grosso do Sul (MS)

50

5706.37

691.33%

1023.65

3584.34

559.51%

573.65

2897.14

329.40%

485.26

6107.55

376.26%

1219.84

Minas Gerais (MG)

31

52866.08

616.96%

9337.94

29911.05

389.95%

4831.86

28714.48

307.06%

4809.34

54301.97

300.83%

11290.86

Par谩 (PA)

15

368.34

100.94%

65.99

202.42

52.07%

27.24

213.98

73.29%

40.61

359.90

75.50%

80.77

Para铆ba (PB)

25

383.65

72.85%

68.27

230.07

49.60%

40.20

228.13

36.36%

30.30

409.14

78.68%

72.17

Paran谩 (PR)

41

30897.03

754.90%

5645.43

17908.14

608.19%

3574.21

14474.89

365.68%

2879.87

46440.78

549.20%

10150.45

Pernambuco (PE)

26

418.48

46.85%

86.49

260.08

36.48%

50.93

247.33

22.94%

46.38

391.87

44.99%

87.64

Piau铆 (PI)

22

772.83

300.11%

129.42

409.20

233.42%

83.75

403.98

163.89%

62.27

512.70

147.07%

91.26

Rio de Janeiro (RJ)

33

4470.28

145.66%

731.96

3095.96

101.89%

435.09

2172.39

73.40%

354.31

5024.65

130.49%

893.55

Rio Grande do Norte (RN)

24

365.27

66.23%

72.67

253.76

45.57%

43.31

189.04

35.11%

30.73

497.00

91.80%

115.72

Rio Grande do Sul (RS)

43

5974.48

1493.76%

1117.43

3837.54

983.06%

727.93

3581.22

826.28%

527.29

8950.27

934.24%

1974.41

Rond么nia (RO)

11

1018.95

372.19%

189.96

624.46

227.83%

107.96

532.71

217.42%

91.97

691.08

161.25%

141.96

Roraima (RR)

14

11.46

43.59%

3.60

6.55

34.15%

1.88

5.70

20.76%

1.59

13.92

60.99%

3.84

Santa Catarina (SC)

42

42907.90

694.70%

7933.01

28463.14

536.58%

3986.80

23381.95

418.37%

3540.09

45467.00

337.38%

10867.04

S茫o Paulo (SP)

35

23468.90

993.41%

4361.10

15017.27

806.61%

2747.93

11338.25

570.01%

2013.90

32842.88

559.51%

6656.80

Sergipe (SE)

28

97.58

38.53%

18.57

53.17

31.26%

11.26

44.62

18.62%

7.62

191.96

78.06%

48.12

Tocantins (TO)

17

271.10

196.45%

45.61

184.62

141.02%

28.33

126.23

120.72%

20.70

436.49

213.06%

77.62